5+(25/(n-5))=125/(n^2-5n)

Simple and best practice solution for 5+(25/(n-5))=125/(n^2-5n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+(25/(n-5))=125/(n^2-5n) equation:


D( n )

n^2-(5*n) = 0

n-5 = 0

n^2-(5*n) = 0

n^2-(5*n) = 0

n^2-5*n = 0

n^2-5*n = 0

DELTA = (-5)^2-(0*1*4)

DELTA = 25

DELTA > 0

n = (25^(1/2)+5)/(1*2) or n = (5-25^(1/2))/(1*2)

n = 5 or n = 0

n-5 = 0

n-5 = 0

n-5 = 0 // + 5

n = 5

n in (-oo:0) U (0:5) U (5:+oo)

25/(n-5)+5 = 125/(n^2-(5*n)) // - 125/(n^2-(5*n))

25/(n-5)-(125/(n^2-(5*n)))+5 = 0

25/(n-5)-125*(n^2-5*n)^-1+5 = 0

25/(n-5)-125/(n^2-5*n)+5 = 0

n^2-5*n = 0

n^2-5*n = 0

n*(n-5) = 0

n-5 = 0 // + 5

n = 5

n*(n-5) = 0

25/(n-5)-125/(n*(n-5))+5 = 0

(25*n)/(n*(n-5))-125/(n*(n-5))+(5*n*(n-5))/(n*(n-5)) = 0

5*n*(n-5)+25*n-125 = 0

5*n^2+25*n-25*n-125 = 0

5*n^2-125 = 0

(5*n^2-125)/(n*(n-5)) = 0

(5*n^2-125)/(n*(n-5)) = 0 // * n*(n-5)

5*n^2-125 = 0

5*n^2 = 125 // : 5

n^2 = 25

n^2 = 25 // ^ 1/2

abs(n) = 5

n = 5 or n = -5

n in { 5}

n = -5

See similar equations:

| 4x+42x=25-15 | | 3(2x-5)+4x-8=12 | | -4+2p=14 | | 2x^2-12x-10=0 | | 6ln(4x)=12 | | 5=v-8 | | 3(z-9)-z(z-9)=0 | | 30+4k=-3(-7k-3)+4k | | -3x+3(4x-5)=21 | | 12x-7=(12/x) | | (x+1)+3x=17 | | 9.9=1.8r | | -2(1-7x)=-38+8x | | 3n^3-21n^2+30n=0 | | 5+2xa=7-4 | | -6x^2+18x+168=0 | | -16+n=4(1+n)+n | | 3=8+5x | | (2x-5)-5=4 | | (x+2)-(3x-4)=-10 | | -38+6x=4(7+7x) | | 8m^2+8m=-2 | | x+2-3x-4=10 | | -10+n/12=-8 | | -y-5y=-1-5 | | 5+a/4=2 | | 8(x+5)=4(x+17) | | (X+15)+39+x=180 | | 6.5c=7-0.5 | | 4/1-x=5/1+x | | -5-25x-40x-10+4x+8x=0 | | 4.2x-3=0.5(8.4+6) |

Equations solver categories